public class SortTest { public int[] createArray() { Random random = new Random(); int[] array = new int[10]; for (int i = 0; i < 10; i++) { array[i] = random.nextInt(100) - random.nextInt(100);//生成两个随机数相减,保证生成的数中有负数 } System.out.println("==========原始序列=========="); printArray(array); return array; } public void printArray(int[] data) { for (int i : data) { System.out.print(i + " "); } System.out.println(); } private void swap(int[] data, int x, int y) { int temp = data[x]; data[x] = data[y]; data[y] = temp; }
//冒泡排序,时间复杂度:O(n)~O(n2),空间复杂度:O(1),稳定性:稳定排序,适用性:数组基本有序时排序较快 public void bubbleSort(int[] data, String sortType) { if (sortType.equals("asc")) { //正排序,从小排到大 //比较的轮数 for (int i = 1; i < data.length; i++) { //将相邻两个数进行比较,较大的数往后冒泡 for (int j = 0; j < data.length - i; j++) { if (data[j] > data[j + 1]) { //交换相邻两个数 swap(data, j, j + 1); } } } } else if (sortType.equals("desc")) { //倒排序,从大排到小 //比较的轮数 for (int i = 1; i < data.length; i++) { //将相邻两个数进行比较,较大的数往后冒泡 for (int j = 0; j < data.length - i; j++) { if (data[j] < data[j + 1]) { //交换相邻两个数 swap(data, j, j + 1); } } } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);//输出冒泡排序后的数组值 }//选择排序,时间复杂度:O(n2),空间复杂度:O(1),不稳定。 算法思想:每次从无序数组中选出一个最小的出来,放到已经排好的数组的前面(或后面)
public void selectSort(int[] data, String sortType) { if (sortType.equals("asc")) { //正排序,从小排到大 int index; for (int i = 1; i < data.length; i++) { index = 0; for (int j = 1; j <= data.length - i; j++) { if (data[j] > data[index]) { index = j; } } //交换在位置data.length-i和index(最大值)两个数 swap(data, data.length - i, index); } } else if (sortType.equals("desc")) { //倒排序,从大排到小 int index; for (int i = 1; i < data.length; i++) { index = 0; for (int j = 1; j <= data.length - i; j++) { if (data[j] < data[index]) { index = j; } } //交换在位置data.length-i和index(最大值)两个数 swap(data, data.length - i, index); } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);//输出直接选择排序后的数组值 } //插入排序,空间复杂度:O(n2),空间复杂度:O(1),稳定。算法思想:逐一取出元素,在已排好的元素序列中从后向前扫描,插入到适当的位置 public void insertSort(int[] data, String sortType) { if (sortType.equals("asc")) { //正排序,从小排到大 //比较的轮数 for (int i = 1; i < data.length; i++) { //保证前i+1个数排好序 for (int j = 0; j < i; j++) { if (data[j] > data[i]) { //交换在位置j和i两个数 swap(data, i, j); } } } } else if (sortType.equals("desc")) { //倒排序,从大排到小 //比较的轮数 for (int i = 1; i < data.length; i++) { //保证前i+1个数排好序 for (int j = 0; j < i; j++) { if (data[j] < data[i]) { //交换在位置j和i两个数 swap(data, i, j); } } } } else { System.out.println("您输入的排序类型错误!"); } printArray(data);//输出插入排序后的数组值 } public void reverse(int[] data) { int length = data.length; int temp = 0;//临时变量 for (int i = 0; i < length / 2; i++) { temp = data[i]; data[i] = data[length - 1 - i]; data[length - 1 - i] = temp; } printArray(data);//输出到转后数组的值 } /*快速排序,时间复杂度:O(nlogn),空间复杂度:O(logn),不稳定。基本思想:第一趟把待排序数据分成独立的两部分,其中一部分所有数据都比另外一部分小,然后再对这两部分分别进行快速排序,整个过程递归,已达到整个数据变成有序数据*/ public void quickSort(int[] data, String sortType) { if (sortType.equals("asc")) { //正排序,从小排到大 qsort_asc(data, 0, data.length - 1); } else if (sortType.equals("desc")) { //倒排序,从大排到小 qsort_desc(data, 0, data.length - 1); } else { System.out.println("您输入的排序类型错误!"); } } private void qsort_asc(int data[], int low, int high) { int i, j, x; if (low < high) { //这个条件用来结束递归 i = low; j = high; x = data[i]; while (i < j) { while (i < j && data[j] > x) { j--; } //从右向左找第一个小于x的数 if (i < j) { data[i] = data[j]; i++;} while (i < j && data[i] < x) { i++; } //从左向右找第一个大于x的数 if (i < j) { data[j] = data[i]; j--;} } data[i] = x; qsort_asc(data, low, i - 1); qsort_asc(data, i + 1, high); } } private void qsort_desc(int data[], int low, int high) { int i, j, x; if (low < high) { //这个条件用来结束递归 i = low; j = high; x = data[i]; while (i < j) { while (i < j && data[j] < x) { j--; } //从右向左找第一个小于x的数 if (i < j) { data[i] = data[j]; i++;} while (i < j && data[i] > x) { i++; } //从左向右找第一个大于x的数 if (i < j) { data[j] = data[i]; j--;} } data[i] = x; qsort_desc(data, low, i - 1); qsort_desc(data, i + 1, high); } } //二分法查找算法一,时间复杂度O(logn) public int binarySearch(int[] dataset, int data, int beginIndex, int endIndex) { int midIndex = (beginIndex + endIndex) / 2; if (data < dataset[beginIndex] || data > dataset[endIndex] || beginIndex > endIndex) return -1; if (data < dataset[midIndex]) { return binarySearch(dataset, data, beginIndex, midIndex - 1); } else if (data > dataset[midIndex]) { return binarySearch(dataset, data, midIndex + 1, endIndex); } else { return midIndex; } } //二分法查找算法二,时间复杂度O(logn) public int binarySearch(int[] dataset, int data) { int beginIndex = 0; int endIndex = dataset.length - 1; int midIndex = -1; if (data < dataset[beginIndex] || data > dataset[endIndex] || beginIndex > endIndex) return -1; while (beginIndex <= endIndex) { midIndex = (beginIndex + endIndex) / 2; //相当于midIndex = (beginIndex + endIndex) / 2,但是效率会高些 if (data < dataset[midIndex]) { endIndex = midIndex - 1; } else if (data > dataset[midIndex]) { beginIndex = midIndex + 1; } else { return midIndex; } } return -1; } public static void main(String[] args) { SortTest sortTest = new SortTest(); int[] array = sortTest.createArray(); System.out.println("==========冒泡排序后(正序)=========="); sortTest.bubbleSort(array, "asc"); System.out.println("==========冒泡排序后(倒序)=========="); sortTest.bubbleSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========倒转数组后=========="); sortTest.reverse(array); array = sortTest.createArray(); System.out.println("==========选择排序后(正序)=========="); sortTest.selectSort(array, "asc"); System.out.println("==========选择排序后(倒序)=========="); sortTest.selectSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========插入排序后(正序)=========="); sortTest.insertSort(array, "asc"); System.out.println("==========插入排序后(倒序)=========="); sortTest.insertSort(array, "desc"); array = sortTest.createArray(); System.out.println("==========快速排序后(正序)=========="); sortTest.quickSort(array, "asc"); sortTest.printArray(array); System.out.println("==========快速排序后(倒序)=========="); sortTest.quickSort(array, "desc"); sortTest.printArray(array); System.out.println("==========数组二分查找=========="); System.out.println("您要找的数在第" + sortTest.binarySearch(array, 74) + "个位子。(下标从0计算)"); } }
参考资料:
--------------------------------------------------------------------
PS: 欢迎关注公众号"Devin说",会不定期更新Java相关技术知识。
--------------------------------------------------------------------